

JACAL

Joint Astronomy CALibration and
imaging software

Contents:

	Introduction
	DALIuGE apps

	Using Yandasoft in DALiuGE

	Installation
	Dependencies

	Docker Image Installation

	Bare-metal Installation

	Example Usage with EAGLE
	Outline

	Preparing the Graph

	Inspecting and Editing the Graph

	Translating

	Deploying

	Example Usage from the Command Line
	Outline

	Preparing the Graph

	Starting DALiuGE

	Running

	Imaging Overview
	JACAL Architecture

	Yandasoft Data Classes

	JACAL Data Classes

	JACAL Interfaces

	API
	Available applications

	Others

Indices and tables

	Index

	Module Index

	Search Page

Introduction

JACAL integrates Yandasoft [https://yandasoft.readthedocs.io/en/latest/]
(previously known as ASKAPSoft)
and the execution framework DALiuGE [https://github.com/ICRAR/daliuge].
A shared library offers a calling convention
supported by DALiuGE and internally links and reuses Yandasoft code.
JACAL is freely available in GitLab [https://gitlab.com/ska-telescope/ska-sdp-jacal]
under a variation of the open source BSD 3-Clause [License](LICENSE).
The repository contains the following:

	The C/C++ code of the shared library libjacal.so described above.

	A number of tests running the different components inside DALiuGE graphs.

	A standalone utility for library testing independent of DALiuGE.

DALIuGE apps

The way JACAL integrates Yandasoft into DALiuGE
is by wrapping individual pieces of functionality
into DALiuGE-compatible applications
that can then be deployed on a DALiuGE graph.

DALiuGE is an execution framework
where programs are expressed as directed acyclic graphs,
with nodes representing not only the different computations
performed on the data as it flows through the graph,
but also the data itself.
Both types of nodes are termed drops.
Computation drops (in DALiuGE, application drops)
read or receive data from their input data drops,
and write the results into their output data drops.
Data drops on the other hand
are storage-agnostic and host-agnostic,
meaning that regardless of underlying storage and location
application drops can work with their inputs and outputs
in the same way.

Although application drops can be implemented in many ways,
DALiuGE offers out-of-the-box support
for certain type of applications.
Among those,
shared libraries can be written by users
to implement application drops.
This capability allows reusing code written in C, C++
or other low-level languages
to work as application drops in a DALiuGE graph.

Using Yandasoft in DALiuGE

Before JACAL,
the only way to use the Yandasoft functionality
was to invoke the binaries it generates
(e.g., cimager, cbpcalibrator, etc.);
composition was only possible
by arranging pipelines using shell scripts and similar techniques,
and with data having to touch disk
between each invocation of the binaries.

JACAL on the other hand implements a shared library
(i.e., libjacal.so)
wrapping different parts of Yandasoft
as DALiuGE-ready application drops.
This makes it possible
to reuse finer-grained pieces of functionality
from the Yandasoft code base,
and with data not having to be necessarily written to disk
between these steps.

Installation

Dependencies

	JACAL has two main dependencies (which in turn might require a lot more):
	
	The DALiuGE execution framework, and

	The Yandasoft libraries

Installation for both dependencies is covered below.

Docker Image Installation

The following installation instructions are recommended for deployment on a
laptop or workstation.

Building the Images

DALiuGE is available from the ICRAR github repo [https://github.com/ICRAR/daliuge]. There are three packages:

	daliuge-common – the base image containing the basic DALiuGE libraries
and dependencies.

	daliuge-translator – the DALiuGE translator, built on top of the base
image. This converts Logical Graphs into Physical Graphs.

	daliuge-engine – the DALiuGE execution engine, built on top of the base
image.

cd <install dir>
git clone https://github.com/ICRAR/daliuge.git
cd daliuge/daliuge-common; ./build_common.sh dev
cd ../daliuge-translator; ./build_translator.sh dev
cd ../daliuge-engine; ./build_engine.sh dev

In JACAL, the standard daliuge-engine is replaced with a JACAL version that is
based on both the DALiuGE base image and the Yandasoft image.

cd <install dir>
git clone https://gitlab.com/ska-telescope/ska-sdp-jacal
cd ska-sdp-jacal; ./build_engine.sh jacal

EAGLE is a web-based visual workspace for generating Logical Graphs.

cd <install dir>
git clone https://github.com/ICRAR/EAGLE.git
cd EAGLE; ./build_eagle.sh dev

Running the Images

Now that the images have been built, they need to be run. After this they can
be graphed and deployed via EAGLE.

cd <install dir>
cd daliuge/daliuge-translator; ./run_translator.sh dev

cd <install dir>
cd ska-sdp-jacal; ./run_engine.sh jacal

cd <install dir>
cd EAGLE; ./run_eagle.sh dev

Bare-metal Installation

Note

For most use cases the docker installation described above is recommended.

DALiuGE

See DALiuGE documentation [https://daliuge.readthedocs.io/en/latest] for
up-to-date installation and usage information.

Yandasoft

See Yandasoft documentation [https://yandasoft.readthedocs.io/en/latest/]
for up-to-date installation and usage information. Note that Yandasoft has a list of
dependencies on its own, including casacore, wcslib, cfitsio, fftw, boost,
log4cxx and gsl.

JACAL

Once DALiuGE and Yandasoft are installed, JACAL itself can be built. JACAL uses the
CMake build system, hence the build instructions are those one would expect:

cd <install dir>
git clone https://gitlab.com/ska-telescope/ska-sdp-jacal
cd ska-sdp-jacal
mkdir build
cd build
cmake ..
make

This process should generate a libjacal.so shared library which one can use
within DALiuGE’s DynlibApp components. Stand-alone executables are also
produced under test, which are used for testing the code outside the
context of DALiuGE.

Example Usage with EAGLE

In this page we briefly describe how to use JACAL in a DALiuGE graph.
This assumes you already built JACAL.

Outline

In this example we will replicate one of the unit tests run in the GitLab CI
pipeline, namely test_basic_imaging. This test performs basic imaging on an
input MeasurementSet using the CalcNE and SolveNE JACAL
components, via the EAGLE web interface.

In DALiuGE a program is expressed as a graph, with nodes listing applications,
and the data flowing through them. Graphs come in two flavours: logical,
expressing the logical constructs used in the program (including loops, gather
and scatter components), and physical, which is the fully-fledged version of
a logical graph after expanding all the logical constructs.

This test is expressed as a logical graph. After translation into a physical
graph it is submitted for execution to the DALiuGE managers, which were
started by running the docker containers during
installation. During execution one can monitor the
progress of the program. This is all
handled via a browser using EAGLE.

Preparing the Graph

For this test you will need to download the
JSON logical graph [https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/jacal/test/daliuge/test_basic_imaging_parset.json].
and the
input dataset [https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/data/chan_1.ms.tar.gz].
When running Yandasoft applications, one typically provides a text file known as a
parset containing configuration options. However this graph uses a DALiuGE drop
to provide the configuration options. First, download the graph to a local
directory:

$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/jacal/test/daliuge/test_basic_imaging_parset.json

Running image icrar/daliuge-engine:jacal generates a temporary work
directory that is accessible both inside and outside the docker container:

$> ls -l /tmp/.dlg
code/
logs/
testdata/
workspace/

The graph assumes that the dataset is located in the testdata directory, so
place it there:

$> cd /tmp/.dlg/testdata
$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/data/chan_1.ms.tar.gz
$> tar xf chan_1.ms.tar.gz

The final assumption in the graph is the specificatin of the JACAL library
within the deocker container, which is set to /usr/local/lib/libjacal.so.

Inspecting and Editing the Graph

Deploying a Graph Locally

After installation on the local host, the DALiuGE
translator will be connected to port 8084 and EAGLE to port 8888. Open a
browser and go to http://localhost:8888/. This will bring up the EAGLE
visual workspace. From the Graph drop-down menu, select Local Storage and
then Load Graph. Navigate to test_basic_imaging_parset.json and load it into
the browser.

[image: _images/test_basic_imaging_parset.png]
This graph performs imaging with a single major cycle of deconvolution.
The graph is just for demonstration and the cleaning is not very deep.
See the imaging overview for more details.
Clicking on each component brings up an Inspector in the right-hand panel
that can be used to read and edit run-time parameters. Of particular interest
are Component Parameters and I/O Ports. The Config component generates
imaging parset, and imaging parameters can found by inspecting its Component
Parameters.

Note

To edit Component Parameters some of the Advanced Editing setting may need
to be altered via the cog in the top right corner.

Before translating and deploying the graph, a few options need to be
configured. The most important is the location of the EAGLE translator. The cog
in the top right corner brings up EAGLE configuration settings, and under
External Services is the Translator URL box. Set this to
http://localhost:8084/gen_pgt, the local translator running in the container
with port 8084 forwarded from the localhost. Setting GitHub and GitLab Access
Tokens can also be done under External Services, allowing EAGLE to access
various repositories.

The logical graph is now ready to be partitioned into a physical graph. From
the Translation tab in the right-hand panel, select Generate PGT to
generate a Physical Graph Template that can be mapped to compute nodes.
This should open the DALiuGE translator interface in a new browser tab.
Click on the Translator settings cog and check the DALiuGE Manager
URL. This should be set to port 8001 of the actual IP address, e.g.
http://130.155.199.71:8001/. Now select Deploy to generate and deploy the
physical graph. This brings up a new browser tab which displays the progress of
the graph.

[image: _images/graph_progress.png]
When the graph has completed, the resulting images can be found in
/tmp/.dlg/workspace. These are shown in the following figure. From the top
left is the initial dirty image, the clean component image, the residual image
and the restored image.

[image: _images/test_basic_imaging_parset_output.png]
Runtime logs can be displayed via docker:

$> docker logs daliuge-engine

Deploying a Graph Remotely

Same as above but point to hostname or IP address rather than localhost.

Deploying a Graph on a Cluster

Todo

Translating

Deploying

Example Usage from the Command Line

In this page we briefly describe how to use JACAL in a DALiuGE graph.
This assumes you already built JACAL.

Outline

In this example we will replicate one of the unit tests run in the GitLab CI
pipeline, namely test_basic_imaging. This test performs basic imaging on an
input MeasurementSet using the CalcNE and SolveNE JACAL
components. The other unit tests work similarly, exercising different JACAL
components in different modes of operation.

In DALiuGE a program is expressed as a graph, with nodes listing applications,
and the data flowing through them. Graphs come in two flavours: logical,
expressing the logical constructs used in the program (including loops, gather
and scatter components), and physical, which is the fully-fledged version of
a logical graph after expanding all the logical constructs.

This test is expressed as a logical graph. After translation into a physical
graph it is submitted for execution to the DALiuGE managers, which need to be
started beforehand. During execution one can monitor the progress of the
program via a browser.

Preparing the Graph

This test needs a few inputs:

	The logical graph [https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/jacal/test/daliuge/test_basic_imaging.json].

	A parset [https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/jacal/test/daliuge/test_basic_imaging.in]
(parsets are text files containing configuration options, and are the
configuration mechanism used throughout Yandasoft).

	Some input data [https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/data/chan_1.ms.tar.gz].

Put all three files above in a new directory, and then decompress the input
data:

$> mkdir tmp
$> cd tmp
$> export TEST_WORKING_DIR=$PWD
$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/jacal/test/daliuge/test_basic_imaging.json?inline=false
$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/jacal/test/daliuge/test_basic_imaging.in?inline=false
$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/data/chan_1.ms.tar.gz?inline=false
$> tar xf chan_1.ms.tar.gz
$> PARSET=$PWD/test_basic_imaging.in

Next, some adjustments will need to be made to the graph so that the JACAL
shared library can be found, and the parset is correctly read at runtime:

$> sed -i "s|%JACAL_SO%|$PATH_TO_JACAL_SO|g; s|%PARSET%|$PARSET|g" test_basic_imaging.json

Starting DALiuGE

Firstly, one needs to start the DALiuGE managers, the runtime entities in
charge of executing graphs. We will start two: the Node Manager (NM), in
charge of executing the graph, and a Data Island Manager (DIM), in charge of
managing one or more NMs. Note that starting the DIM is not strictly required,
but is done for completeness.

Start the managers each on a different terminal so you can see their outputs
independently. Also, to make the test simpler, start both in the same directory
where the downloaded files are placed:

$> cd $TEST_WORKING_DIR
$> dlg nm -v
$> dlg dim -N 127.0.0.1 -v

Running

To execute a graph we submit it to one of the DALiuGE managers (in our case, the
DIM). Also, because we are starting from a logical graph, we need to transform
it into a physical graph that can be run on the deployed managers.

This can be done as follows:

$> cd $TEST_WORKING_DIR
$> cat test_basic_imaging.in \
 | dlg unroll-and-partition `# Logical -> Physical translation` \
 | dlg map `# Assign nodes to drops (i.e., schedule the graph)` \
 | dlg submit -w `# Submit and wait until execution finishes`

Finally, connect to 127.0.0.1:8000 to see the graph running:

[image: _images/dlg_runtime.png]
Note that CalcNE now supports new gridders with more flexible data
partitioning. This can be enabled with JACAL-specific parset parameter
Cimager.gridder.dataaccess=datapartitions (set to yandasoft or leave unset
to use the Yandasoft data iterators and gridders). The type of partitioning
is set with JACAL-specific parset parameter Cimager.gridder.partitiontype:

GitHub: ICRAR/EAGLE-graph-repo (master): examples/jacal_CalcNElight.graph

Imaging Overview

JACAL Architecture

JACAL is a package in which elements of Yandasoft have been extracted from their
MPI-based framework and reset within DALiuGE. The current level of granularity of
imported code is one level down from the Yandasoft imaging applications, with
separate DALiuGE drops for major cycles (visibility inversion and prediction) and
minor cycles (image based deconvolution). At lower levels the Yandasoft libraries
are used, and at higher levels DALiuGE is used. As described below, recent
updates have added an extra level of control at the major cycle level, with
separate drops for visibility ingest, inversion and prediction. This will
become the standard level used in JACAL going forward.

Standard Yandasoft continuum imaging has visibility inversion and prediction tasks
partitioned across a cluster, with different MPI ranks handling one or more
spectral channels and/or Taylor terms. A range of gridders and degridders are
available for these tasks. After prediction, subtraction and inversion, the
intermediate images are merged to a single MPI rank for joint image-based
preconditioning and deconvolution. Such a setup can also be achieved in JACAL
by expanding the example graph from the
EAGLE Usage section. For example, the following graph
generates dirty and PSF images separately for four spectral channels, which
are then reduced (merged) into a single set that are passed to the solver for
deconvolution. The output clean-component sky model is distributed to another
set of major cycle components for visibiltiy prediction, subtraction and
inversion, and the resulting residual images are again reduced to a single
image for restoring and then output.

[image: _images/jacal_continuum_merges.png]
The images being reduced are shown as Normal data drops in the graph, which,
as described below, are BlobString copies of Yandasoft ImagingNormalEquations
objects. These objects contain sets of imaging products, including the main
dirty/residual image hypercube (polarisation, frequency and direction axes),
the PSF hypercube, an alternative PSF hypercube used for preconditioning if
required, and a weights hypercube containing primary beam pixel weights if an
appropriate gridder was used. As the frequencies all have the same image
coordinates, the merging is a simple pixel-wise accumulation. Sky models sent
for prediction and restoring are BlobString copies of Yandasoft Params objects.
These are used throughout Yandasoft calibration and imaging, but in this context
contain just the solved imaging parameters (a clean component hypercube for
each Taylor term) and a small amount of associated metadata. Both of these
classes are defined in the Yandasoft base-scimath library.

On the DALiuGE side, arbitrary parallelism can be achieved using Scatter drops,
and multiple major cycle / minor cycle iterations can be realised using a Loop
drop. The one feature missing at present is the tree reduction merge, which is
implemented in the graph as a series of parallel binary reductions. For N
parallel major cycle components, this restricts the depth of reduction to
log2N rather than N sucessive merges. A binary tree reduction version
of the DALiuGE Gather drop has been earmarked for development in the near future.

One difference between Yandasoft MPI-based parallelism and that of DALiuGE is the
independence or otherwise of processes. In Yandasoft, cycling over major and minor
cycles is achieved by alternating between parallel major cycle tasks, running
on the majority of processes, and the minor cycle tasks running on a single
process. Each MPI rank deals with the same set of channels and Taylor terms
throughout the imaging process, making it simple and efficient to cache things
like visibilities and gridding kernels. However a DALiuGE scatter is set up
differently. DALiuGE drops running on a given node either all use the same
process space or all use different ones. This makes it hard to cache data
between cycles, however it is the more general and flexible approach from a
large-scale HPC perspective, where fixing data to specific nodes may not be the
optimal solution. An approach better suited to DALiuGE would be to use data drops
for persistant data, with the framework deciding what can be cached and what
needs to be moved between compute nodes. The partitioning and interfaces
described on this page will evolve as JACAL moves in this direction.

Separate Major Cycle Drops

The main components of the major cycle have been separated out as separate
drops.

	Ingest: Read data from measurement set and fill a VisInfo partition, including the generation of a visibility data cache.

	GenerateGridData: Convert VisInfo partition into a GriddingInfo partition, including the generation of gridding kernel cache. Can be distinct for different types of gridders (e.g. gridders in GridInvert and degridders in GridPredict).

	GridInvert: Grid data and weights to form dirty and PSF images.

	GridPredict: Degrid model images to form model visibilities, which are subtracted from input visibilities to form output residual visibilities.

An expanded version of the example graph from the
EAGLE Usage section is given below.

[image: _images/major_cycle_drops.png]

Yandasoft Data Classes

ImagingNormalEquations

Yandasoft base-scimath ImagingNormalEquations contain the products
generated in the imaging
process. A given object can contain multiple sets of products, which may be
related to one another (such as Taylor term images) or may be entirely
indpendent (although multiple independent imaging paths are not supported in
JACAL). The names of the equations determine the relationship. Each
equation contains the main dirty image hypercube, which may have additional
axes for polarisation and frequency, the PSF hypercube, an alternative PSF
hypercube used for preconditioning if required, and a weights hypercube
containing primary beam pixel weights if an appropriate gridder was used.
Depending on the imaging parameters, the shape, coordinates and reference
pixel may also be stored.

The ImagingNormalEquations class also contains a number of functions for
manipulating data. Of most relevance here is the merge() function. When
one set of equations is merged into another, any equation with a distinct name
is stored separately, however any equations with the same name are combined.
If they have the same shape and coordinates, the various cubes are simply
added together. If the shape or coordinates are different, as they would be
for multi-beaming or facets, accumulation occurs after the image cubes have
been weighted by the weights cubes and reprojected to common coordaintes.

Params

Yandasoft base-scimath Params are used throughout Yandasoft calibration and
imaging as arbitrary containers for both fixed and free parameters. In the
context of imaging, they contain the imaging parameters (i.e. images or
hypercubes) that can be read in from a FITS or CASA image and/or generated
from clean components during deconvolution. In continuum imaging there is a
separate parameter for each Taylor term. Params also contain a small amount
of metadata for each parameter, and a number of functions for manipulating the
metadata. These give a minimal description of the axes of the parameter (type
and extent) and whether or not it is a free parameter. The latter is used, for
example, in auto-differentiation when setting up normal equations.

JACAL Data Classes

A set of new data classes have been added to JACAL to give more flexibility to
how data are gridded and degridded. As such, a number of the Yandasoft gridding
classes have been copied into JACAL so they can interface with this class and
make use of it. It also provides a lightweight way of swapping from the current
underlying Yandasoft data accessors to others, such as Apache Plasma.

GriddingData

This is a simple container to hold one or more VisInfo and/or GriddingInfo
objects.

VisInfo

The visibility data ingested by an Ingest process are stored in one or more
data partitions of type VisInfo. Current partitioning options are
time or w-value, with frequency partitioning handled by the underlying data
accessors. However other options can be added in a straightforward manner. The
visibilities and metadata are stored as flat vectors and the partitioning tasks
deal with any algorithmic complexities. Current vectors are:

int itsNumberOfSamples; // total number of baselines & frequencies in each partition
int itsNumberOfPols; // number of polarisations
int itsNumberOfChannels; // number of frequencies (needed to handle Taylor term weighting)

bool itsConvertedToImagePol; // have the vis and weights been converted to the imaging polarisation frame?

/// Pointing metadata
casacore::MVDirection itsImageCentre;
casacore::MVDirection itsTangentPoint;

/// Vectors of length itsNumberOfSamples
std::vector<double> itsU; // u coordinate in wavelengths. Not used after init.
std::vector<double> itsV; // v coordinate in wavelengths. Not used after init.
std::vector<double> itsW; // w coordinate in wavelengths. Not used after init.
std::vector<std::complex<float> > itsPhasor; // phase shift for each visibility
std::vector<int> itsChannel; // frequency channel, needed to handle Taylor term weighting
std::vector<bool> itsFlag; // flagging state

/// A-projection vectors of length itsNumberOfSamples
std::vector<casacore::MVDirection> itsPointingDir1; // Not used after init.
std::vector<casacore::MVDirection> itsPointingDir2; // Not used after init.
std::vector<float> itFeed1PA; // not used after init.
std::vector<float> itFeed2PA; // not used after init.

/// Vectors of length itsNumberOfPols
casacore::Vector<casacore::Stokes::StokesTypes> itsStokes;

/// Vectors of length itsNumberOfChannels
std::vector<double> itsFrequencyList;

/// Nested vectors of length itsNumberOfSamples,itsNumberOfPols
std::vector<std::vector<float> > itsWeight; // vis sample weight.
std::vector<std::vector<float> > itsNoise; // sample RMS. Not used after init.
std::vector<std::vector<std::complex<float> > > itsSample; // vis samples

GriddingInfo

The GenerateGridData application converts a set of VisInfo partitions to an
equal number of GriddingInfo partitions. These metadata are also stored as
flat vectors. The gridders are set up to simply grid or degrid the elements of
the vectors stored in this class. All data required by the Yandasoft gridders are
currently passed in this class, but the gridders and the interface are expected
to evolve towards the interface used in the SKA Processing Function Library.
The GenerateGridData application also generates the cache of gridding kernels.
Current vectors are:

int itsNumberOfSamples; // total number of baselines & frequencies in each partition
int itsNumberOfPols; // number of polarisations
int itsNumberOfChannels; // number of frequencies (needed to handle Taylor term weighting)

/// Vectors of length itsNumberOfSamples
std::vector<std::complex<float> > itsPhasor; // phase shift for each visibility
std::vector<int> itsChannel; // frequency channel, needed to handle Taylor term weighting
std::vector<bool> itsFlag; // flagging state
std::vector<int> itsGridIndexU; // u index in grid
std::vector<int> itsGridIndexV; // v index in grid
std::vector<int> itsKernelIndex; // index in kernel grid, including oversampling planes

/// Vectors of length itsNumberOfChannels
std::vector<double> itsFrequencyList;

/// Nested vectors of length itsNumberOfSamples,itsNumberOfPols
std::vector<std::vector<float> > itsWeight; // vis sample weight.

/// Convolution kernels
int nPlanes;
std::vector<int> cSize; // Vector of kernel sizes (length nPlanes)
std::vector<std::vector<casacore::Complex> > itsConvFunc; // Nested vector of kernels ([nPlanes][cSize*cSize])
std::vector<std::vector<int> > itsConvFuncOffsets; // Nested vector of kernel offsets ([nPlanes][2])

JACAL Interfaces

Interfaces between JACAL imaging components are at present data drops formed
from Yandasoft and JACAL classes that have been converted to BlobStrings.

ImagingNormalEquations

/// @brief write the object to a blob stream
void ImagingNormalEquations::writeToBlob(LOFAR::BlobOStream& os) const
{
 os << itsNormalMatrixSlice // PSF cubes; dirty image cubes; std::map<std::string, casacore::Vector<imtype> >
 << itsNormalMatrixDiagonal // weights cubes; dirty image cubes; std::map<std::string, casacore::Vector<imtype> >
 << itsPreconditionerSlice // dirty image cubes; std::map<std::string, casacore::Vector<imtype> >
 << itsShape // shape of the cubes; std::map<std::string, casacore::IPosition>
 << itsReference // reference pixel of images; std::map<std::string, casacore::IPosition>
 << itsCoordSys // coordinate system of the images; std::map<std::string, casacore::CoordinateSystem>
 << itsDataVector; // dirty image cubes; std::map<std::string, casacore::Vector<imtype> >
}

/// @brief read the object from a blob stream
void ImagingNormalEquations::readFromBlob(LOFAR::BlobIStream& is)
{
 is >> itsNormalMatrixSlice
 >> itsNormalMatrixDiagonal
 >> itsPreconditionerSlice
 >> itsShape
 >> itsReference
 >> itsCoordSys
 >> itsDataVector;
}

Type imtype is either float or double.

Params

/// @brief write the object to a blob stream
LOFAR::BlobOStream& operator<<(LOFAR::BlobOStream& os, const Params& par)
{
 os.putStart("Params",BLOBVERSION);
 os << par.itsUseFloat // use float or double for the Arrays; bool
 << par.itsArrays // image data; std::map<std::string, casacore::Array<double> >
 << par.itsArraysF // image data; std::map<std::string, casacore::Array<float> >
 << par.itsAxes // image axes; std::map<std::string, Axes>
 << par.itsFree; // the free/fixed status of the parameter; std::map<std::string, bool>
 os.putEnd();
 return os;
}

/// @brief read the object from a blob stream
LOFAR::BlobIStream& operator>>(LOFAR::BlobIStream& is, Params& par)
{
 const int version = is.getStart("Params");
 ASKAPCHECK(version == BLOBVERSION, "Attempting to read from a blob stream of the wrong version");
 is >> par.itsUseFloat
 >> par.itsArrays
 >> par.itsArraysF
 >> par.itsAxes
 >> par.itsFree;
 is.getEnd();
 // as the object has been updated one needs to obtain new change monitor
 par.itsChangeMonitors.clear();
 return is;
}

Type Axes is also defined in the Yandasoft base-scimath library. It contains the
names (e.g. “RA_LIN”, “FREQ”) and extrema (start and end values as doubles) of
a set of axes, using standard casacore types such as
casacore::DirectionCoordinate and casacore::Stokes::StokesTypes.

GriddingInfo

/// @brief write the object to a blob stream
LOFAR::BlobOStream& operator<<(LOFAR::BlobOStream& os, const GriddingInfo& info)
{
 // Copy the cache of gridding kernels to a suitable format.
 // This will be removed once a final cache format has been chosen.
 const int nPlanes = info.itsConvFunc.size();
 std::vector<int> cSize(nPlanes);
 std::vector<std::vector<casacore::Complex> > tmpConvFunc(nPlanes);
 for (uint plane = 0; plane < nPlanes; ++plane) {
 cSize[plane] = info.itsConvFunc[plane].nrow();
 tmpConvFunc[plane].resize(cSize[plane]*cSize[plane]);
 for (uint j = 0; j < cSize[plane]; ++j) {
 for (uint i = 0; i < cSize[plane]; ++i) {
 tmpConvFunc[plane][j*cSize[plane]+i] = info.itsConvFunc[plane](i,j);
 }
 }
 }
 os.putStart("GriddingInfo",BLOBVERSION);
 os << info.itsNumberOfSamples
 << info.itsNumberOfChannels
 << info.itsNumberOfPols
 << info.itsFrequencyList
 << info.itsGridIndexU
 << info.itsGridIndexV
 << info.itsKernelIndex
 << info.itsPhasor
 << info.itsChannel
 << info.itsFlag
 << info.itsWeight
 << nPlanes
 << cSize
 << tmpConvFunc;
 os.putEnd();
 return os;
}

/// @brief read the object from a blob stream
LOFAR::BlobIStream& operator>>(LOFAR::BlobIStream& is, GriddingInfo& info)
{
 const int version = is.getStart("GriddingInfo");
 ASKAPCHECK(version == BLOBVERSION, "Attempting to read from a blob stream of the wrong version");
 // first get size parameters and resize the vectors
 is >> info.itsNumberOfSamples
 >> info.itsNumberOfChannels
 >> info.itsNumberOfPols;
 is >> info.itsFrequencyList
 >> info.itsGridIndexU
 >> info.itsGridIndexV
 >> info.itsKernelIndex
 >> info.itsPhasor
 >> info.itsChannel
 >> info.itsFlag
 >> info.itsWeight;
 int nPlanes;
 is >> nPlanes;
 std::vector<int> cSize(nPlanes);
 is >> cSize;
 std::vector<std::vector<casacore::Complex> > tmpConvFunc(nPlanes);
 for (uint plane = 0; plane < nPlanes; ++plane) {
 tmpConvFunc[plane].resize(cSize[plane]*cSize[plane]);
 }
 is >> tmpConvFunc;
 // Copy the cache of gridding kernels back to the required format.
 // This will be removed once a final cache format has been chosen.
 info.itsConvFunc.resize(nPlanes);
 for (uint plane = 0; plane < nPlanes; ++plane) {
 info.itsConvFunc[plane].resize(cSize[plane],cSize[plane]);
 for (uint j = 0; j < cSize[plane]; ++j) {
 for (uint i = 0; i < cSize[plane]; ++i) {
 info.itsConvFunc[plane](i,j) = tmpConvFunc[plane][j*cSize[plane]+i];
 }
 }
 }
 is.getEnd();
 return is;
}

vis data

The GenerateGridData application extracts the visibility data and passes them
as a separate blob drop. The current format, which is expected to change, is a
simple nested vector of complex values:

std::vector<std::vector<std::complex<float> > > vis;
vis.resize(itsNumberOfSamples);
for (uint i=0; i<itsNumberOfSamples; ++i) {
 vis[i].resize(itsNumberOfPols);
}

API

	Available applications

	Others

Available applications

	
class CalcNE : public askap::DaliugeApplication

	CalcNE.

Calculates the Normal Equations

This class encorporates all of the tasks needed to form imaging Normal Equations: read from a measurement set; degrid model visibilities; subtract model visibilities; grid residual visibilities and FFT the grid
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL librarc

	Param param/Arg01

	[in] Arg01/name=CalcNE/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

	Param port/Model

	[in] Model/scimath::Params/ Params of solved normal equations

	Param port/Normal

	[out] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to solve

	
class InitSpectralCube : public askap::DaliugeApplication

	InitSpectralCube.

Build the output image cube

This class builds the output cube in the format specified by the parset.
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=InitSpectralCube/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ The Config file

	
class LoadNE : public askap::DaliugeApplication

	LoadNE.

Example class that simply loads Normal Equations from a drop

Implements a test method that uses the contents of the the parset to load in a measurement set and print a summary of its contents. We will simply load in a NormalEquation from a daliuge drop and output the image. This simply tests the NE interface to the daliuge memory drop.
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=LoadNE/String/readonly/

	Param port/Normal

	[in] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to solve

	
class LoadParset : public askap::DaliugeApplication

	LoadParset.

Load a LOFAR Parameter Set in the DaliugeApplication Framework

Loads a configuration from a file drop and generates a LOFAR::ParameterSet The first ASKAP example in the Daliuge framework that actually performs an ASKAP related task. We load a parset into memory from either a file or another Daliuge drop_status
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=LoadParset/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

	Param port/Config

	[out] Config/LOFAR::ParameterSet/

	
class LoadVis : public askap::DaliugeApplication

	LoadVis.

Loads a visibility set, grids it onto the UV plane and FFTs the grid

Loads a configuration from a file drop and a visibility set from a casacore::Measurement Set
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=LoadVis/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ The Config file Params of solved normal equations

	Param port/Normal

	[out] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to solve

	
class MajorCycle : public askap::DaliugeApplication

	MajorCycle.

Loads a visibility set, grids it onto the UV plane and FFTs the grid

Loads a configuration from a file drop and a visibility set from a casacore::Measurement Set
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=MajorCycle/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ The Config file

	Param port/Cube

	[in] Cube/Cube

	Param port/Normal

	[out] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to solve

	
class NESpectralCube : public askap::DaliugeApplication

	NESpectralCube.

Build an output image cube from input NormalEquations

This class builds the output cube is whatever format specified by the parset. Generates a cube of NormalEquation slices.
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=NESpectralCube/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

	Param port/Normal

	[in] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to solve

	
class OutputParams : public askap::DaliugeApplication

	OutputParams.

Solves an Normal Equation provided by a Daliuge Drop. Outputs the Params class as images.

Implements an ASKAPSoft solver. This essentially takes a NormalEquation and generates a a set of “params” usually via a minor cycle deconvolution. We will simply load in a NormalEquation from a daliuge drop and solve it via a minor cycle deconvolution. This drop actually generates the output images based upon the contents of the Params object.
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=OutputParams/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

	Param port/Model

	[in] Model/scimath::Params/

	Param port/Restored Model

	[in] Restored Model/scimath::Params/

	
class ReduceNE : public askap::DaliugeApplication

	ReduceNE.

Merge two Normal Equation objects

Use askap::scimath::ImagingNormalEquations::merge() to merge two NEs
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=ReduceNE/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ The Config file ImagingNormalEquations to merge

	Param port/Normal

	[in] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to merge

	Param port/Normal

	[out] Normal/scimath::ImagingNormalEquations/ Merged ImagingNormalEquations to merged further or solve

	
class RestoreSolver : public askap::DaliugeApplication

	RestoreSolver.

Implements an ASKAPSoft Restore solver. This essentially takes a NormalEquation and a set of “params” and creates a restored image.

This takes a configuration and a set of normal equations and uses the Solver requested in in the ParameterSet to produce an ouput model.
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=RestoreSolver/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ The Config file Params of solved normal equations

	Param port/Normal

	[in] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to solve

	Param port/Restored Model

	[out] Restored Model/scimath::Params/

	
class SolveNE : public askap::DaliugeApplication

	SolveNE.

Implements an ASKAPSoft solver. This essentially takes a NormalEquation and generates a set of params usually via a minor cycle deconvolution.

This takes a configuration and a set of normal equations and uses the Solver requested in in the ParameterSet to produce an ouput model.
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=SolveNE/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ The Config file ImagingNormalEquations to solve

	Param port/Model

	[out] Model/scimath::Params/ Params of solved normal equations

	
class SpectralCube : public askap::DaliugeApplication

	SpectralCube.

Build the output image cube

This class builds the output cube is whatever format specified by the parset.
	EAGLE_START
	

	EAGLE_END
	

	Param category

	DynlibApp

	Param param/libpath

	[in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL library

	Param param/Arg01

	[in] Arg01/name=SpectralCube/String/readonly/

	Param port/Config

	[in] Config/LOFAR::ParameterSet/ The Config file Params of solved normal equations

	Param port/Cube

	[out] Cube/Cube/

Others

	
class DaliugeApplication

	Daliuge application class.

This class encapsulates the functions required of a daliuge application as specified in dlg_app.h then exposes them as C functions

Subclassed by askap::CalcNE, askap::GenerateGridData, askap::GridInvert, askap::GridPredict, askap::Ingest, askap::InitSpectralCube, askap::JacalBPCalibrator, askap::LoadNE, askap::LoadParset, askap::LoadVis, askap::MajorCycle, askap::NESpectralCube, askap::OutputParams, askap::ReduceNE, askap::RestoreSolver, askap::SolveNE, askap::SpectralCube

	
class DaliugeApplicationFactory

	Factory class that registers and manages the different possible instances of of a DaliugeApplication. .

Contains a list of all applications and creates/instantiates the correct one based upon the “name” of the Daliuge DynLib drop. Maintains a registry of possible applications and selects - based upon a name which one will be instantiated.

	
class NEUtils

	set of static utility functions for the NE manipulation

These are just a set of static functions I use more than once

Index

 A

A

 	
 	askap::CalcNE (C++ class)

 	askap::DaliugeApplication (C++ class)

 	askap::DaliugeApplicationFactory (C++ class)

 	askap::InitSpectralCube (C++ class)

 	askap::LoadNE (C++ class)

 	askap::LoadParset (C++ class)

 	askap::LoadVis (C++ class)

 	
 	askap::MajorCycle (C++ class)

 	askap::NESpectralCube (C++ class)

 	askap::NEUtils (C++ class)

 	askap::OutputParams (C++ class)

 	askap::ReduceNE (C++ class)

 	askap::RestoreSolver (C++ class)

 	askap::SolveNE (C++ class)

 	askap::SpectralCube (C++ class)

 nav.xhtml

 Table of Contents

 		
 JACAL

 		
 Introduction

 		
 DALIuGE apps

 		
 Using Yandasoft in DALiuGE

 		
 Installation

 		
 Dependencies

 		
 Docker Image Installation

 		
 Building the Images

 		
 Running the Images

 		
 Bare-metal Installation

 		
 DALiuGE

 		
 Yandasoft

 		
 JACAL

 		
 Example Usage with EAGLE

 		
 Outline

 		
 Preparing the Graph

 		
 Inspecting and Editing the Graph

 		
 Deploying a Graph Locally

 		
 Deploying a Graph Remotely

 		
 Deploying a Graph on a Cluster

 		
 Translating

 		
 Deploying

 		
 Example Usage from the Command Line

 		
 Outline

 		
 Preparing the Graph

 		
 Starting DALiuGE

 		
 Running

 		
 Imaging Overview

 		
 JACAL Architecture

 		
 Separate Major Cycle Drops

 		
 Yandasoft Data Classes

 		
 ImagingNormalEquations

 		
 Params

 		
 JACAL Data Classes

 		
 GriddingData

 		
 VisInfo

 		
 GriddingInfo

 		
 JACAL Interfaces

 		
 ImagingNormalEquations

 		
 Params

 		
 GriddingInfo

 		
 vis data

 		
 API

 		
 Available applications

 		
 Others

_images/test_basic_imaging_parset.png
Output Model

SolveNE

RestoraSolver

_images/test_basic_imaging_parset_output.png
J2000 Declination

J2000 Declination

51
54

—45°
03
06
09

1.0995 GHz

12M31Mp0s 30M00° 29™15°

06
09

J2000 Right Ascension

1.0995 GHz

12"31Mp0s 30M00% 29M1s5°

J2000 Right Ascension

J2000 Declination

J2000 Declination

51

06
09

1.0995 GHz

12h31Mp0s 30M00° 29™15°

J2000 Right Ascension

1.0995 GHz

12"31Mp0s 30M00° 29M1s5°®

J2000 Right Ascension

_images/jacal_continuum_merges.png
Config chan 0

MajorCycle Normal

Config chan 1 MajorCycle Normal

Config chan 2 MajorCycle Normal

Config chan 3 MajorCycle Normal

ReduceNE Normal

ReduceNE Normal

ReduceNE Normal o)
o> Al

Config chan 0 MajorCycle l .‘, 4
Cugi
’ ‘ ReduceNE Normal
. o)
o]

Config chan 1 MajorCycls

o)

Ngrmal

G i il ReduceNE Nms,
o> i

Config chan 2 MajorCycle

ReduceNE
(] G pgio
O

Config chan 3 MajorCycle Normal (*|®/
o

RestoreSolver

o]

Restored Model

[ole)

_images/major_cycle_drops.png
Config

SolveNE

Griddinginfo Gridinvert Normal

OutputParams

Visinto

Config

RestoreS

GridPredict

Gridinvert g

_static/file.png

_static/minus.png

_static/plus.png

_images/dlg_runtime.png
NodeManager ~ Session: 1583295127.764225

Status: Running

Progress Bar

List El 1

Cancel Session

140
SoweNE

_images/graph_progress.png
Session: test_basic_imaging_parset.json_2022-03-24T09-56-39.454364

CaleNE Normal
DynibAgp storage: Mamory
202200 260328 1.0 202205 4T0B3326.5.0 SoneNE Model
DyriAop storage: Memory
ouzzovzeroaezs 2.0 202205 4TUB3328.1.0
CaleNE
o Dyriaop

storags: Paramatersat 2022.03241093325.7.0

