
jacal Documentation

YANDA Team

Nov 28, 2021

CONTENTS:

1 Introduction 3
1.1 DALIuGE apps . 3
1.2 Using Yandasoft in DALiuGE . 3

2 Installation 5
2.1 Dependencies . 5
2.2 jacal . 6

3 Example Usage 7
3.1 Outline . 7
3.2 Preparing the graph . 7
3.3 Starting DALiuGE . 8
3.4 Running . 8

4 API 9
4.1 Available applications . 9
4.2 Others . 14

5 Indices and tables 15

Index 17

i

ii

jacal Documentation

Joint Astronomy CALibration and imaging software

CONTENTS: 1

jacal Documentation

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

JACAL integrates Yandasoft (previously known as ASKAPSoft) and the execution framework DALiuGE. A shared
library offers a calling convention supported by DALiuGE and internally links and reuses Yandasoft code. JACAL is
freely available in GitLab under a variation of the open source BSD 3-Clause [License](LICENSE). The repository
contains the following:

• The C/C++ code of the shared library libjacal.so described above.

• A number of tests running the different components inside DALiuGE graphs.

• A standalone utility for library testing independent of DALiuGE.

The repository is an offshoot from the original located in GitHub. The latter should be considered deprecated, and has
only been left available for reference.

1.1 DALIuGE apps

The way jacal integrates Yandasoft into DALiuGE is by wrapping individual pieces of functionality into DALiuGE-
compatible applications that can then be deployed on a DALiuGE graph.

DALiuGE is an execution framework where programs are expressed as directed acyclic graphs, with nodes representing
not only the different computations performed on the data as it flows through the graph, but also the data itself. Both
types of nodes are termed drops. Computation drops (in DALiuGE, application drops) read or receive data from their
input data drops, and write the results into their output data drops. Data drops on the other hand are storage-agnostic
and host-agnostic, meaning that regardless of underlying storage and location application drops can work with their
inputs and outputs in the same way.

Although application drops can be implemented in many ways, DALiuGE offers out-of-the-box support for certain type
of applications. Among those, shared libraries can be written by users to implement application drops. This capability
allows reusing code written in C, C++ or other low-level languages to work as application drops in a DALiuGE graph.

1.2 Using Yandasoft in DALiuGE

Before JACAL, the only way to use the Yandasoft functionality was to invoke the binaries it generates (e.g., cimager,
cbpcalibrator, etc.); composition was only possible by arranging pipelines using shell scripts and similar techniques,
and with data having to touch disk between each invocation of the binaries.

JACAL on the other hand implements a shared library (i.e., libjacal.so) wrapping different parts of Yandasoft
as DALiuGE-ready application drops. This makes it possible to reuse finer-grained pieces of functionality from the
Yandasoft code base, and with data not having to be necessarily written to disk between these steps.

3

https://www.atnf.csiro.au/computing/software/askapsoft/sdp/docs/current/pipelines/introduction.html
https://github.com/ICRAR/daliuge
https://gitlab.com/ska-telescope/ska-sdp-jacal
https://github.com/ICRAR/ska-sdp-jacal

jacal Documentation

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Dependencies

Jacal has two main dependencies (which in turn might require a lot more):

• The DALiuGE execution framework, and

• The Yandasoft libraries

Installation for both dependencies is covered below:

2.1.1 DALiuGE

DALiuGE is written in python and has publicly available releases in PyPI:

pip install daliuge

Alternatively one can install it directly from its GitHub repository:

pip install git+https://github.com/ICRAR/daliuge

In both cases all dependencies will automatically be built and installed. Most are offered as binary wheels and require
no compilation, but some do; hence a compiler will be needed.

2.1.2 Yandasoft

Yandasoft is written in C++ and uses the CMake build system for its installation. The source code that makes up
Yandasoft is not contained in a single repository but in a few, which can be found here. However, a separate “integrated”
repo brings them all together into a single build pass, with options to skip building some of the repositories if one doesn’t
need them.

Note: At the moment of writing, jacal builds against the develop branch of Yandasoft.

Not all Yandasoft components are required by jacal. Therefore to build Yandasoft in preparation for jacal the following
instructions would be required:

git clone https://github.com/rtobar/all_yandasoft
cd all_yandasoft
./git-do clone
mkdir build

(continues on next page)

5

https://bitbucket.csiro.au/projects/ASKAPSDP
https://github.com/rtobar/all_yandasoft
https://github.com/rtobar/all_yandasoft

jacal Documentation

(continued from previous page)

cd build
cmake .. -DBUILD_ANALYSIS=OFF -DBUILD_PIPELINE=OFF
make
make install

Note that Yandasoft has a list of dependencies on its own. These include:

• casacore and casarest

• wcslib

• cfitsio

• fftw

• boost

• log4cxx

• gsl

These need to be installed before attempting to install Yandasoft, but instructions to do so are outside the scope of this
document.

2.2 jacal

Once all dependencies are installed, jacal itself can be built. jacal uses the CMake build system, hence the build
instructions are those one would expect:

git clone https://gitlab.com/ska-telescope/ska-sdp-jacal
cd jacal
mkdir build
cd build
cmake ..
make

This process should generate a libjacal.so shared library which one can use within DALiuGE’s DynlibApp com-
ponents. Two stand-alone executables are also produced under test which are used for testing the code outside the
context of DALiuGE.

6 Chapter 2. Installation

CHAPTER

THREE

EXAMPLE USAGE

In this page we briefly describe how to use jacal in a DALiuGE graph. This assumes you already built jacal.

3.1 Outline

In this example we will replicate one of the unit tests run in the GitLab CI pipeline, namely test_basic_imaging.
This test performs basic imaging on an input MeasurementSet using the CalcNE and SolveNE jacal components. The
other unit tests work similarly, exercising different jacal components in different modes of operation.

In DALiuGE a program is expressed as a graph, with nodes listing applications, and the data flowing through them.
Graphs come in two flavours: logical, expressing the logical constructs used in the program (including loops, gather
and scatter components), and physical, which is the fully-fledged version of a logical graph after expanding all the
logical constructs.

This test is expressed as a logical graph. After translation into a physical graph it is submitted for execution to the
DALiuGE managers, which need to be started beforehand. During execution one can monitor the progress of the
program via a browser.

3.2 Preparing the graph

This test needs a few inputs:

• The logical graph.

• A parset (parsets are text files containing configuration options, and are the configuration mechanism used
throughout yandasoft).

• Some input data.

Put all three files above in a new directory, and then decompress the input data:

$> mkdir tmp
$> cd tmp
$> export TEST_WORKING_DIR=$PWD
$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/jacal/test/daliuge/
→˓test_basic_imaging.json?inline=false
$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/jacal/test/daliuge/
→˓test_basic_imaging.in?inline=false
$> wget https://gitlab.com/ska-telescope/ska-sdp-jacal/-/raw/master/data/chan_1.ms.tar.
→˓gz?inline=false

(continues on next page)

7

https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/jacal/test/daliuge/test_basic_imaging.json
https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/jacal/test/daliuge/test_basic_imaging.in
https://gitlab.com/ska-telescope/ska-sdp-jacal/-/blob/master/data/chan_1.ms.tar.gz

jacal Documentation

(continued from previous page)

$> tar xf chan_1.ms.tar.gz
$> PARSET=$PWD/test_basic_imaging.in

Next, some adjustments will need to be made to the graph so that the jacal shared library can be found, and the parset
is correctly read at runtime:

$> sed -i "s|%JACAL_SO%|$PATH_TO_JACAL_SO|g; s|%PARSET%|$PARSET|g" test_basic_imaging.
→˓json

3.3 Starting DALiuGE

Firstly, one needs to start the DALiuGE managers, the runtime entities in charge of executing graphs. We will start two:
the Node Manager (NM), in charge of executing the graph, and a Data Island Manager (DIM), in charge of managing
one or more NMs. Note that starting the DIM is not strictly required, but is done for completeness.

Start the managers each on a different terminal so you can see their outputs independently. Also, to make the test
simpler, start both in the same directory where the downloaded files are placed:

$> cd $TEST_WORKING_DIR
$> dlg nm -v
$> dlg dim -N 127.0.0.1 -v

3.4 Running

To execute a graph we submit it to one of the DALiuGE managers (in our case, the DIM). Also, because we are starting
from a logical graph, we need to transform it into a physical graph that can be run on the deployed managers.

This can be done as follows:

$> cd $TEST_WORKING_DIR
$> cat test_basic_imaging.in \
| dlg unroll-and-partition `# Logical -> Physical translation` \
| dlg map `# Assign nodes to drops (i.e., schedule the graph)` \
| dlg submit -w `# Submit and wait until execution finishes`

Finally, connect to 127.0.0.1:8000 to see the graph running:

Note that following graph uses an alternative version of CalcNE, CalcNElight, which has a more flexible data parti-
tioning approach. This partitioning can be set with jacal-specific parset parameter Cimager.gridder.partitiontype:

GitHub: ICRAR/EAGLE-graph-repo (master): examples/jacal_CalcNElight.graph

8 Chapter 3. Example Usage

CHAPTER

FOUR

API

4.1 Available applications

class CalcNE : public askap::DaliugeApplication
CalcNE.

Calculates the Normal Equations

This class encorporates all the tasks to read from a measurement set; subtract a model; grid residual visibilities
and FFT the grid

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=CalcNE/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

param port/Model [in] Model/scimath::Params/ Params of solved normal equations

param port/Normal [out] Normal/scimath::ImagingNormalEquations ImagingNormalEquations to
solve

class CalcNElight : public askap::DaliugeApplication
CalcNElight.

Calculates the Normal Equations

This class encorporates all the tasks to read from a measurement set; subtract a model; grid residual visibilities
and FFT the grid

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=CalcNElight/String/readonly/

9

jacal Documentation

param port/Config [in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

param port/Model [in] Model/scimath::Params/ Params of solved normal equations

param port/Normal [out] Normal/scimath::ImagingNormalEquations ImagingNormalEquations to
solve

class InitSpectralCube : public askap::DaliugeApplication
InitSpectralCube.

Build the output image cube

This class builds the output cube in the format specified by the parset.

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=InitSpectralCube/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ The Config file

class LoadNE : public askap::DaliugeApplication
LoadNE.

Example class that simply loads Normal Equations from a drop

Implements a test method that uses the contents of the the parset to load in a measurement set and print a summary
of its contents. We will simply load in a NormalEquation from a daliuge drop and output the image. This simply
tests the NE interface to the daliuge memory drop.

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=LoadNE/String/readonly/

param port/Normal [in] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to
solve

class LoadParset : public askap::DaliugeApplication
LoadParset.

Load a LOFAR Parameter Set in the DaliugeApplication Framework

Loads a configuration from a file drop and generates a LOFAR::ParameterSet The first ASKAP example in the
Daliuge framework that actually performs an ASKAP related task. We load a parset into memory from either a
file or another Daliuge drop_status

EAGLE_START

EAGLE_END

10 Chapter 4. API

jacal Documentation

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=LoadParset/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

param port/Config [out] Config/LOFAR::ParameterSet/

class LoadVis : public askap::DaliugeApplication
LoadVis.

Loads a visibility set, grids it onto the UV plane and FFTs the grid

Loads a configuration from a file drop and a visibility set from a casacore::Measurement Set

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=LoadVis/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ The Config file Params of solved normal
equations

param port/Normal [out] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations
to solve

class MajorCycle : public askap::DaliugeApplication
MajorCycle.

Loads a visibility set, grids it onto the UV plane and FFTs the grid

Loads a configuration from a file drop and a visibility set from a casacore::Measurement Set

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=MajorCycle/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ The Config file

param port/Cube [in] Cube/Cube

param port/Normal [out] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations
to solve

class NESpectralCube : public askap::DaliugeApplication
NESpectralCube.

4.1. Available applications 11

jacal Documentation

Build an output image cube from input NormalEquations

This class builds the output cube is whatever format specified by the parset. Generates a cube of NormalEquation
slices.

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=NESpectralCube/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

param port/Normal [in] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to
solve

class OutputParams : public askap::DaliugeApplication
OutputParams.

Solves an Normal Equation provided by a Daliuge Drop. Outputs the Params class as images.

Implements an ASKAPSoft solver. This essentially takes a NormalEquation and generates a a set of “params”
usually via a minor cycle deconvolution. We will simply load in a NormalEquation from a daliuge drop and solve
it via a minor cycle deconvolution. This drop actually generates the output images based upon the contents of
the Params object.

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=OutputParams/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ ParameterSet descriptor for the image solver

param port/Model [out] Model/scimath::Params/

class RestoreSolver : public askap::DaliugeApplication
RestoreSolver.

Implements an ASKAPSoft Restore solver. This essentially takes a NormalEquation and a set of “params” and
creates a restored image.

This takes a configuration and a set of normal equations and uses the Solver requested in in the ParameterSet to
produce an ouput model.

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

12 Chapter 4. API

jacal Documentation

param param/Arg01 [in] Arg01/name=RestoreSolver/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ The Config file Params of solved normal
equations

param port/Normal [in] Normal/scimath::ImagingNormalEquations/ ImagingNormalEquations to
solve

param port/Restored Model [out] Restored Model/scimath::Params/

class SolveNE : public askap::DaliugeApplication
SolveNE.

Implements an ASKAPSoft solver. This essentially takes a NormalEquation and generates a set of params usually
via a minor cycle deconvolution.

This takes a configuration and a set of normal equations and uses the Solver requested in in the ParameterSet to
produce an ouput model.

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=SolveNE/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ The Config file ImagingNormalEquations
to solve

param port/Model [out] Model/scimath::Params/ Params of solved normal equations

class SpectralCube : public askap::DaliugeApplication
SpectralCube.

Build the output image cube

This class builds the output cube is whatever format specified by the parset.

EAGLE_START

EAGLE_END

param category DynlibApp

param param/libpath [in] Library Path/”%JACAL_SO%”/String/readonly/ The path to the JACAL
library

param param/Arg01 [in] Arg01/name=SpectralCube/String/readonly/

param port/Config [in] Config/LOFAR::ParameterSet/ The Config file Params of solved normal
equations

param port/Cube [out] Cube/Cube/

4.1. Available applications 13

jacal Documentation

4.2 Others

class DaliugeApplication
Daliuge application class.

This class encapsulates the functions required of a daliuge application as specified in dlg_app.h then exposes
them as C functions

Subclassed by askap::CalcNE, askap::CalcNElight, askap::InitSpectralCube, askap::JacalBPCalibrator,
askap::LoadNE, askap::LoadParset, askap::LoadVis, askap::MajorCycle, askap::NESpectralCube,
askap::OutputParams, askap::RestoreSolver, askap::SolveNE, askap::SpectralCube

class DaliugeApplicationFactory
Factory class that registers and manages the different possible instances of of a DaliugeApplication. .

Contains a list of all applications and creates/instantiates the correct one based upon the “name” of the Daliuge
DynLib drop. Maintains a registry of possible applications and selects - based upon a name which one will be
instantiated.

class NEUtils
set of static utility functions for the NE manipulation

These are just a set of static functions I use more than once

14 Chapter 4. API

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

15

jacal Documentation

16 Chapter 5. Indices and tables

INDEX

A
askap::CalcNE (C++ class), 9
askap::CalcNElight (C++ class), 9
askap::DaliugeApplication (C++ class), 14
askap::DaliugeApplicationFactory (C++ class),

14
askap::InitSpectralCube (C++ class), 10
askap::LoadNE (C++ class), 10
askap::LoadParset (C++ class), 10
askap::LoadVis (C++ class), 11
askap::MajorCycle (C++ class), 11
askap::NESpectralCube (C++ class), 11
askap::NEUtils (C++ class), 14
askap::OutputParams (C++ class), 12
askap::RestoreSolver (C++ class), 12
askap::SolveNE (C++ class), 13
askap::SpectralCube (C++ class), 13

17

	Introduction
	DALIuGE apps
	Using Yandasoft in DALiuGE

	Installation
	Dependencies
	DALiuGE
	Yandasoft

	jacal

	Example Usage
	Outline
	Preparing the graph
	Starting DALiuGE
	Running

	API
	Available applications
	Others

	Indices and tables
	Index

