

JACAL

Joint Astronomy CALibration and
imaging software

Contents:

	Introduction
	DALIuGE apps

	Using Yandasoft in DALiuGE

	Installation
	Dependencies

	jacal

	Example Usage
	Outline

	Preparing the graph

	Starting DALiuGE

	Running

	API
	Available applications

	Others

Indices and tables

	Index

	Module Index

	Search Page

Introduction

JACAL integrates
Yandasoft [https://www.atnf.csiro.au/computing/software/askapsoft/sdp/docs/current/pipelines/introduction.html]
(previously known as ASKAPSoft)
and the execution framework DALiuGE [https://github.com/ICRAR/daliuge].
A shared library offers a calling convention
supported by DALiuGE and internally links and reuses Yandasoft code.
JACAL is freely available in GitLab [https://gitlab.com/ska-telescope/jacal]
under a variation of the open source BSD 3-Clause [License](LICENSE).
The repository contains the following:

	The C/C++ code of the shared library libjacal.so described above.

	A number of tests running the different components inside DALiuGE graphs.

	A standalone utility for library testing independent of DALiuGE.

The repository is an offshoot
from the original located in GitHub [https://github.com/ICRAR/jacal].
The latter should be considered deprecated, and has only been left available
for reference.

DALIuGE apps

The way jacal integrates Yandasoft into DALiuGE
is by wrapping individual pieces of functionality
into DALiuGE-compatible applications
that can then be deployed on a DALiuGE graph.

DALiuGE is an execution framework
where programs are expressed as directed acyclic graphs,
with nodes representing not only the different computations
performed on the data as it flows through the graph,
but also the data itself.
Both types of nodes are termed drops.
Computation drops (in DALiuGE, application drops)
read or receive data from their input data drops,
and write the results into their output data drops.
Data drops on the other hand
are storage-agnostic and host-agnostic,
meaning that regardless of underlying storage and location
application drops can work with their inputs and outputs
in the same way.

Although application drops can be implemented in many ways,
DALiuGE offers out-of-the-box support
for certain type of applications.
Among those,
shared libraries can be written by users
to implement application drops.
This capability allows reusing code written in C, C++
or other low-level languages
to work as application drops in a DALiuGE graph.

Using Yandasoft in DALiuGE

Before JACAL,
the only way to use the Yandasoft functionality
was to invoke the binaries it generates
(e.g., cimager, cbpcalibrator, etc.);
composition was only possible
by arranging pipelines using shell scripts and similar techniques,
and with data having to touch disk
between each invocation of the binaries.

JACAL on the other hand implements a shared library
(i.e., libjacal.so)
wrapping different parts of Yandasoft
as DALiuGE-ready application drops.
This makes it possible
to reuse finer-grained pieces of functionality
from the Yandasoft code base,
and with data not having to be necessarily written to disk
between these steps.

Installation

Dependencies

Jacal has two main dependencies (which in turn might require a lot more):

	The DALiuGE execution framework, and

	The Yandasoft libraries

Installation for both dependencies is covered below:

DALiuGE

DALiuGE is written in python and has publicly available releases in PyPI:

pip install daliuge

Alternatively one can install it directly from its GitHub repository:

pip install git+https://github.com/ICRAR/daliuge

In both cases all dependencies will automatically be built and installed.
Most are offered as binary wheels and require no compilation,
but some do; hence a compiler will be needed.

Yandasoft

Yandasoft is written in C++ and uses the CMake build system for its installation.
The source code that makes up Yandasoft is not contained
in a single repository but in a few, which can be found
here [https://bitbucket.csiro.au/projects/ASKAPSDP].
However, a separate “integrated” repo [https://github.com/rtobar/all_yandasoft]
brings them all together into a single build pass,
with options to skip building some of the repositories
if one doesn’t need them.

Note

At the moment of writing,
jacal builds against the develop branch of Yandasoft.

Not all Yandasoft components are required by jacal.
Therefore to build Yandasoft in preparation for jacal
the following instructions would be required:

git clone https://github.com/rtobar/all_yandasoft
cd all_yandasoft
./git-do clone
mkdir build
cd build
cmake .. -DBUILD_ANALYSIS=OFF -DBUILD_PIPELINE=OFF
make
make install

Note that Yandasoft has a list of dependencies on its own.
These include:

	casacore and casarest

	wcslib

	cfitsio

	fftw

	boost

	log4cxx

	gsl

These need to be installed before attempting to install Yandasoft,
but instructions to do so are outside the scope of this document.

jacal

Once all dependencies are installed,
jacal itself can be built.
jacal uses the CMake build system,
hence the build instructions are those one would expect:

git clone https://gitlab.com/ska-telescope/jacal
cd jacal
mkdir build
cd build
cmake ..
make

This process should generate a libjacal.so shared library
which one can use within DALiuGE’s DynlibApp components.
Two stand-alone executables are also produced under test
which are used for testing the code outside the context of DALiuGE.

Example Usage

In this page we briefly describe how to use
jacal in a DALiuGE graph.
This assumes you already built jacal.

Outline

In this example we will replicate one of the unit tests
run in the GitLab CI pipeline,
namely test_basic_imaging.
This test performs basic imaging on an input MeasurementSet
using the CalcNE and SolveNE jacal components.
The other unit tests work similarly,
exercising different jacal components
in different modes of operation.

In DALiuGE a program is expressed as a graph,
with nodes listing applications,
and the data flowing through them.
Graphs come in two flavours: logical,
expressing the logical constructs used in the program
(including loops, gather and scatter components),
and physical, which is the fully-fledged version of a logical graph
after expanding all the logical constructs.

This test is expressed as a logical graph.
After translation into a physical graph
it is submitted for execution
to the DALiuGE managers,
which need to be started beforehand.
During execution one can monitor the progress of the program
via a browser.

Preparing the graph

This test needs a few inputs:

	The logical graph [https://gitlab.com/ska-telescope/jacal/-/blob/master/jacal/test/daliuge/test_basic_imaging.json].

	A parset [https://gitlab.com/ska-telescope/jacal/-/blob/master/jacal/test/daliuge/test_basic_imaging.in]
(parsets are text files containing configuration options,
and are the configuration mechanism used throughout yandasoft).

	Some input data [https://gitlab.com/ska-telescope/jacal/-/blob/master/data/chan_1.ms.tar.gz].

Put all three files above in a new directory,
and then decompress the input data:

$> mkdir tmp
$> cd tmp
$> export TEST_WORKING_DIR=$PWD
$> wget https://gitlab.com/ska-telescope/jacal/-/raw/master/jacal/test/daliuge/test_basic_imaging.json?inline=false
$> wget https://gitlab.com/ska-telescope/jacal/-/raw/master/jacal/test/daliuge/test_basic_imaging.in?inline=false
$> wget https://gitlab.com/ska-telescope/jacal/-/raw/master/data/chan_1.ms.tar.gz?inline=false
$> tar xf chan_1.ms.tar.gz
$> PARSET=$PWD/test_basic_imaging.in

Next, some adjustments will need to be made to the graph
so that the jacal shared library can be found,
and the parset is correctly read at runtime:

$> sed -i "s|%JACAL_SO%|$PATH_TO_JACAL_SO|g; s|%PARSET%|$PARSET|g" test_basic_imaging.json

Starting DALiuGE

Firstly, one needs to start
the DALiuGE managers,
the runtime entities in charge
of executing graphs.
We will start two:
the Node Manager (NM),
in charge of executing the graph,
and a Data Island Manager (DIM),
in charge of managing one or more NMs.
Note that starting the DIM is not strictly required,
but is done for completeness.

Start the managers each on a different terminal
so you can see their outputs independently.
Also, to make the test simpler,
start both in the same directory
where the downloaded files are placed:

$> cd $TEST_WORKING_DIR
$> dlg nm -v
$> dlg dim -N 127.0.0.1 -v

Running

To execute a graph we submit it
to one of the DALiuGE managers (in our case, the DIM).
Also, because we are starting from a logical graph,
we need to transform it into a physical graph
that can be run on the deployed managers.

This can be done as follows:

$> cd $TEST_WORKING_DIR
$> cat test_basic_imaging.in \
 | dlg unroll-and-partition `# Logical -> Physical translation` \
 | dlg map `# Assign nodes to drops (i.e., schedule the graph)` \
 | dlg submit -w `# Submit and wait until execution finishes`

Finally, connect to 127.0.0.1:8000
to see the graph running:

[image: _images/dlg_runtime.png]

API

	Available applications

	Others

Available applications

	
class CalcNE : public askap::DaliugeApplication

	CalcNE.

Calculates the Normal Equations

This class encorporates all the tasks to read from a measurement set; subtract a model; grid residual visibilities and FFT the grid
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=CalcNE/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] ParameterSet descriptor for the image solver

	Param port/Model/scimath::Params

	[in] Params of solved normal equations

	Param port/Normal/scimath::ImagingNormalEquations

	[out] ImagingNormalEquations to solve

	
class InitSpectralCube : public askap::DaliugeApplication

	InitSpectralCube.

Build the output image cube

This class builds the output cube in the format specified by the parset.
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=InitSpectralCube/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] The Config file

	Param port/Cube

	[out]

	
class LoadNE : public askap::DaliugeApplication

	LoadNE.

Example class that simply loads Normal Equations from a drop

Implements a test method that uses the contents of the the parset to load in a measurement set and print a summary of its contents. We will simply load in a NormalEquation from a daliuge drop and output the image. This simply tests the NE interface to the daliuge memory drop.
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=LoadNE/String/readonly

	[in]

	Param port/Normal/scimath::ImagingNormalEquations

	[in] ImagingNormalEquations to solve

	
class LoadParset : public askap::DaliugeApplication

	LoadParset.

Load a LOFAR Parameter Set in the DaliugeApplication Framework

Loads a configuration from a file drop and generates a LOFAR::ParameterSet The first ASKAP example in the Daliuge framework that actually performs an ASKAP related task. We load a parset into memory from either a file or another Daliuge drop_status
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=LoadParset/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] ParameterSet descriptor for the image solver

	Param port/Config/LOFAR::ParameterSet

	[out]

	Param port/Config/LOFAR::ParameterSet

	[out]

	
class LoadVis : public askap::DaliugeApplication

	LoadVis.

Loads a visibility set, grids it onto the UV plane and FFTs the grid

Loads a configuration from a file drop and a visibility set from a casacore::Measurement Set
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=LoadVis/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] The Config file

	Param port/Model/scimath::Params

	[in] Params of solved normal equations

	Param port/Normal/scimath::ImagingNormalEquations

	[out] ImagingNormalEquations to solve

	
class MajorCycle : public askap::DaliugeApplication

	MajorCycle.

Loads a visibility set, grids it onto the UV plane and FFTs the grid

Loads a configuration from a file drop and a visibility set from a casacore::Measurement Set
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=MajorCycle/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] The Config file

	Param port/Solved Model/scimath::Params

	[in]

	Param port/Cube

	[in]

	Param port/Normal/scimath::ImagingNormalEquations

	[out] ImagingNormalEquations to solve

	
class NESpectralCube : public askap::DaliugeApplication

	NESpectralCube.

Build an output image cube from input NormalEquations

This class builds the output cube is whatever format specified by the parset. Generates a cube of NormalEquation slices.
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=NESpectralCube/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] ParameterSet descriptor for the image solver

	Param port/Normal/scimath::ImagingNormalEquations

	[in] ImagingNormalEquations to solve

	
class OutputParams : public askap::DaliugeApplication

	OutputParams.

Solves an Normal Equation provided by a Daliuge Drop. Outputs the Params class as images.

Implements an ASKAPSoft solver. This essentially takes a NormalEquation and generates a a set of “params” usually via a minor cycle deconvolution. We will simply load in a NormalEquation from a daliuge drop and solve it via a minor cycle deconvolution. This drop actually generates the output images based upon the contents of the Params object.
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=OutputParams/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] ParameterSet descriptor for the image solver

	Param port/Model/scimath::Params

	[out]

	
class RestoreSolver : public askap::DaliugeApplication

	RestoreSolver.

Implements an ASKAPSoft Restore solver. This essentially takes a NormalEquation and a set of “params” and creates a restored image.

This takes a configuration and a set of normal equations and uses the Solver requested in in the ParameterSet to produce an ouput model.
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=RestoreSolver/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] The Config file

	Param port/Model/scimath::Params

	[in] Params of solved normal equations

	Param port/Normal/scimath::ImagingNormalEquations

	[in] ImagingNormalEquations to solve

	Param port/Restored Model/scimath::Params

	[out]

	
class SolveNE : public askap::DaliugeApplication

	SolveNE.

Implements an ASKAPSoft solver. This essentially takes a NormalEquation and generates a set of params usually via a minor cycle deconvolution.

This takes a configuration and a set of normal equations and uses the Solver requested in in the ParameterSet to produce an ouput model.
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=SolveNE/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] The Config file

	Param port/Normal/scimath::ImagingNormalEquations

	[in] ImagingNormalEquations to solve

	Param port/Model/scimath::Params

	[out] Params of solved normal equations

	
class SpectralCube : public askap::DaliugeApplication

	SpectralCube.

Build the output image cube

This class builds the output cube is whatever format specified by the parset.
	EAGLE_START
	

	EAGLE_END
	

	Param gitrepo

	

	Param version

	

	Param category

	DynlibApp

	Param param/libpath/LibraryPath/%JACAL_SO%/String/readonly

	[in] The path to the JACAL library

	Param param/Arg01/Arg01/name=SpectralCube/String/readonly

	[in]

	Param port/Config/LOFAR::ParameterSet

	[in] The Config file

	Param port/Model/scimath::Params

	[in] Params of solved normal equations

	Param port/Cube

	[out]

Others

	
class DaliugeApplication

	Daliuge application class.

This class encapsulates the functions required of a daliuge application as specified in dlg_app.h then exposes them as C functions

Subclassed by askap::CalcNE, askap::InitSpectralCube, askap::JacalBPCalibrator, askap::LoadNE, askap::LoadParset, askap::LoadVis, askap::MajorCycle, askap::NESpectralCube, askap::OutputParams, askap::RestoreSolver, askap::SolveNE, askap::SpectralCube

	
class DaliugeApplicationFactory

	Factory class that registers and manages the different possible instances of of a DaliugeApplication. .

Contains a list of all applications and creates/instantiates the correct one based upon the “name” of the Daliuge DynLib drop. Maintains a registry of possible applications and selects - based upon a name which one will be instantiated.

	
class NEUtils

	set of static utility functions for the NE manipulation

These are just a set of static functions I use more than once

Index

 A

A

 	
 	askap::CalcNE (C++ class)

 	askap::DaliugeApplication (C++ class)

 	askap::DaliugeApplicationFactory (C++ class)

 	askap::InitSpectralCube (C++ class)

 	askap::LoadNE (C++ class)

 	askap::LoadParset (C++ class)

 	askap::LoadVis (C++ class)

 	
 	askap::MajorCycle (C++ class)

 	askap::NESpectralCube (C++ class)

 	askap::NEUtils (C++ class)

 	askap::OutputParams (C++ class)

 	askap::RestoreSolver (C++ class)

 	askap::SolveNE (C++ class)

 	askap::SpectralCube (C++ class)

 nav.xhtml

 Table of Contents

 		
 JACAL

 		
 Introduction

 		
 DALIuGE apps

 		
 Using Yandasoft in DALiuGE

 		
 Installation

 		
 Dependencies

 		
 DALiuGE

 		
 Yandasoft

 		
 jacal

 		
 Example Usage

 		
 Outline

 		
 Preparing the graph

 		
 Starting DALiuGE

 		
 Running

 		
 API

 		
 Available applications

 		
 Others

_static/minus.png

_static/plus.png

_images/dlg_runtime.png
NodeManager ~ Session: 1583295127.764225

Status: Running

Progress Bar

List El 1

Cancel Session

140
SoweNE

_static/file.png

